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Receptivity of a laminar boundary layer to the interaction of time-harmonic free- 
stream disturbances with a three-dimensional roughness element is studied. The 
three-dimensional nonlinear triple-deck equations are solved numerically to  provide 
the basic stcady-state motion. At high Rcynolds numbers, the governing equations 
for the unsteady motion are the unsteady linearizcd three-dimensional triple-deck 
equations. These equations can only be solved numerically. I n  the absence of any 
roughness element, the free-stream disturbances, to the first order, produce the 
classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower 
deck). However, with the introduction of a small three-dimensional roughness 
clement, the interaction between the hump and the Stokes flow introduces a 
spectrum of all spatial disturbances inside the boundary layer. For supercritical 
values of the scaled Strouhal number, So > 2, these Tollmien-Schlichting waves are 
amplified in a wedge-shaped region, 15" to 18" to  the basic-flow direction, extending 
downstream of the hump. The amplification rate approaches a value slightly higher 
than that of two-dimensional Tollmien-Schlichting waves, as calculated by the 
linearized analysis, far downstream of the roughness element. 

1. Introduction 
Boundary-layer transition has been one of the most active areas of research in fluid 

mechanics. Two types of transition are generally considered. The first type, bypass 
transition, is the process in which the external disturbances : sound, free-stream 
turbulence etc. or the internal disturbances : vibrations, roughness, etc. are strong 
enough that vortex stretching and other nonlinear mechanisms directly lead to 
turbulence without going through the known instability mechanisms. The second 
type is the so-called ' quiet ' environment transition which evolves gradually, as has 
been experimentally documented, and can be followed by theory and numerical 
computations (see Reshotko 1976 and Mack 1984). 

The latter type is broken down into four stages of development (Herbert & 
Bodonyi 1989) : (1) receptivity ; (2) primary instability ; (3) secondary instability ; (4) 
breakdown. 

Most of the work in boundary-layer stability theory has been on the behaviour of 
the individual normal-mode solutions of the linearized, parallel stability equations. 
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Numerous methods have been suggested to calculate the neutral stability curves and 
growth rates of these normal modes. Even the widely used eN method is based on the 
amplitude ratio of the most unstable mode of the linear theory. However, in natural 
transition a spectrum of instability waves is present and the boundary layers found 
in practice are not parallel. The local Reynolds number is constantly changing and 
the energy is being redistributed by the interaction of all the modes. This has brought 
the attention of experimental investigations to the evolution of wave packets in the 
boundary layer (see Gaster 1975, 1985; Gaster & Grant 1975; Gilev, Kachanov & 
Kozlov 1981 ; Kachanov 1985 and Mack & Kendall 1983). Gaster (1985) found that 
even very weak wave packets, with velocity fluctuations of the order of 5 x when 
normalized by the free-stream velocity, are influenced by the non-parallel and 
nonlinear effects. Theoretical study of the wave packets has been slow owing to the 
complexity of the numerical computations. 

Receptivity is the means by which a particular forced disturbance enters the 
boundary layer and initiates the transition process. If the initial disturbances are 
sufficiently large, they can grow by forcing mechanisms to nonlinear levels and 
eventually lead to turbulence (transition of the first type) and, therefore, bypass the 
well-known mechanisms of the second type. If they are small, they will tend to excite 
free disturbances in the boundary layer which are better known as Tollmien- 
Schlichting (T-S) waves. These waves will go through other stages of 
development depending on the nature of the problem. It is this first stage in the 
transition process which is the subject of this study. 

Receptivity is fundamentally different from the classical eigenvalue stability 
problem. It is a boundary-value problem, since it involves the response of the 
boundary layer to an externally imposed disturbance. However, naturally occurring 
free-stream disturbances travel a t  much higher speeds than instability waves. 
Therefore, characteristic wavelengths of the free-stream disturbances at  a given 
frequency are much longer than the T-S waves. Hence, a wavelength conversion is 
required to  transfer energy from these long waves to  the much shorter T-S waves. 
This wavelength conversion is the core of the receptivity problem (see Reshotko 
1984). Goldstein (1983, 1985), Goldstein & Hultgren (1987, 1989) using asymptotic 
methods showed that the wavelength conversion takes place a t  locations where the 
mean flow exhibits rapid changes and non-parallel effects are important. Examples 
are near the leading edge of a body and/or any region downstream where locally the 
boundary layer has to adjust rapidly to local pressure gradients (roughness, blowing, 
etc.). 

Here we are interested in the interaction of small protuberances (on the scale ofthe 
T-S wavelengths) in the surface geometry and unsteady free-stream disturbances. 
Using the triple-deck scaling of Stewartson & Williams (1969) and Smith (1979), 
Goldstein ( 1985) showed that small two-dimensional surface variations can produce 
a large coupling between T-S waves and the imposed disturbance, when these 
variations are sufficiently rapid (order of a T-S wavelength). However, Goldstein 
(1985) uses the linearized solution of Stewartson for the steady flow and his entire 
analysis is limited to the linearized case of a very small hump. 

Recently, Bodonyi et al. (1989) have considered a numerical study of the 
interaction of free-stream disturbances and a small two-dimensional roughness 
element placed on a flat plate. In that study the two-dimensional nonlinear 
viscous-inviscid triple-deck equations were solved numerically to provide the basic 
steady motion. It was shown that the unsteady motion is governed by the unsteady 
linearized triple-deck equations, in suitably scaled variables. The solution was 
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assumed to  be harmonic in time. Numerical solutions were found for a range of values 
of frequency of the imposed free-stream disturbances and the hump height. It was 
found that the amplitude of all disturbance quantities grows without bound, 
downstream of the hump, if 8, > 2.29 ..., where So is the scaled Strouhal number 
based on the frequency of the free-stream disturbances. For values of 8, < 2.29 . . . , 
the disturbances eventually decay to zero amplitude and the flow remains stable. 
Thus the numerical solutions illustrate the growth or decay of the T-S waves 
generated by the interaction between the free-stream disturbance and the two- 
dimensional roughness element, depending on the value of the scaled Strouhal 
number. 

In this study, the analysis of Bodonyi et al. (1989) is extended to the interaction 
of a three-dimensional protuberance and time-harmonic disturbances in the free 
stream. The three-dimensional nonlinear triple-deck equations are solved numeric- 
ally to provide the basic steady-state motion. It is shown that the governing 
equations for the unsteady motion are the unsteady linearized three-dimensional 
triple-deck equations. These equations can only be solved numerically. The 
interaction of free-stream disturbances with the local pressure gradients induced by 
the hump’s presence introduces a spectrum of all spatial disturbances in the 
boundary layer. These disturbances travel downstream in the growing boundary 
layer and amplify or decay while interacting with each other. Again i t  is found that 
the growth or decay of T-S waves is dependent on the scaled Strouhal number. 
However, the three-dimensionality manifests itself in spanwise wavelength selection 
and modulation. It is also found that the growth of T-S waves is confined t o  a wedge- 
shaped region downstream of the roughness element. 

2. Problem formulation 
We shall consider the receptivity of a laminar boundary layer on a flat plate to  the 

interaction of a small three-dimensional wall roughness element with free-stream 
time-harmonic disturbances. A small three-dimensional protuberance, of the order of 
the triple-deck structure (explained below), is placed a t  a distance L* from the 
leading edge on an otherwise flat plate. The flow is assumed to be incompressible with 
a uniform free-stream equation plus a small time-harmonic oscillation of frequency 
w imposed at infinity : u* = U$[  1 + Se-iwt*] ; where S + 1. Consider a Cartesian 
coordinate system (x, y,z), non-dimensionalized by length L*, with x in the 
streamwise direction, y in the spanwise direction, and z in the vertical direction with 
the origin taken at the leading edge. Also, time t is non-dimensionalized by the 
frequency w .  

The triple-deck structure is the asymptotic distinguished limit of the Navier- 
Stokes equations describing a small local flow structure, smaller than order one, 
in the boundary layer of an external flow a t  high Reynolds number (see figure 1 ) .  This 
flow structure could be caused by wall suction, slot injection, wall turning, etc. or in 
our problem by a small three-dimensional wall roughness. The Reynolds number is 
defined as: 

Re = U s  L*/u, (2.1) 

where u is the kinematic viscosity of the fluid. This structure was discovered by 
Stewartson & Williams (1969) and also, independently, by Messiter (1970) and by 
Neiland (1969). Over the past twenty years it has found many applications in steady 
and unsteady flows (see Stewartson 1974 and Smith 1982, 1986). 
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z, w 
t 

3-D hump 
FIGURE 1 .  The triple-deck flow structure. 

Assuming Re 4 1, we define the small parameter c :  

E = Red.  (2.2) 
We wish to consider small humps of size O(e3L*) in the streamwise and spanwise 
directions (order of a T-S wavelength) and height O(e5L*). Thus, we define the 
rescaled independent variables (superscript * indicates dimensional variables) : 

(x*-L*, y*) 
, t = wt* ,  

L* 
(x,y) = €-3  

z, = eP52*/L* in the lower deck, 
z, = E-~z*/L* in the main deck, 
z, = eP3z*/L* in the upper deck. 

The total flow quantities can be written as a steady flow part plus a small unsteady 
perturbation of O( 6) : 

VF(X,t) = V(x )+&u(x , t ) ,  (2.7) 
pF(X,  t )  = p ( x )  + 6 p ( x ,  t ) .  (2.8) 

Furthermore, the Navier-Stokes equations for an incompressible flow are written as 

v .  VF = 0, (2.9) 
(2.10) 

s = wL*/UE. (2.11) 

Sat  VF+ VF.VVF = -VPF+Re-'V2VF, 

where S is the Strouhal number defined by 

Thus substituting (2.7) and (2.8) into the Navier-Stokes equations we have 

v .  V+&V.v  = 0, 
and 

(2.12) 

V .  V V +  V P -  Re-' V 2  V +  S{Sa, v +  u-V V +  V .  V v +  V p -  Re-' V 2 v }  + S2{v.Vv} = 0. 
(2.13) 

The steady-state motion satisfies the Navier-Stokes equations to the 'zeroth ' order: 

v*v=o ,  
V . V V =  -VP+Re-'V2V. 

(2.14) 
(2.15) 
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Subtracting (2.14) and (2.15) from (2.12) and (2.13), respectively, and neglecting the 
second-order terms in 6, we obtain the linearized Navier-Stokes equations governing 
the unsteady motion of the perturbed flow : 

v*v = 0, 
S a , v + v . V V +  V - V o  = -Vp+Re-lV2v. 

(2.16) 

(2.17) 

2.1 Basic steady-state flow 
As shown in previous steady triple-deck analyses the fundamental problem reduces 
to a consideration of the lower- and upper-deck equations. We shall solve the 
governing equations in both upper and lower decks simultaneously, subject to 
appropriate boundary and matching conditions. The appropriately scaled variables 
in the lower deck for the steady flow are 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

and the governing equations in the lower deck are the three-dimensional boundary- 
layer equations 

a,u,+a,v,+azlw, = o ,  (2.22) 

Ul a, u,+ v, 3, u,+ w, azl u, = -a,p, +~ ,1 ,1  U,, 
u, a, v, + v, 3, v, + W,”] v, = - a p ,  + aqzl v,, 

(2.23) 

(2.24) 

‘1 = y) Only, (2.25) 

subject to the boundary conditions 

U, = V, = W, = 0 on z1 = hF(x,y), (2.26) 

U,+hzl, V,,W,,P,+O as x+-m and/or y + f m ,  (2.27) 

U, -+ h(zl + A @ ,  y)) as z1 + 00,  (2.28) 

(2.29) 

where h = UB(0) is the slope of the incoming velocity profile at  the wall, F ( x ,  y) is the 
scaled order-one hump shape, and h is an order-one scaling parameter (with respect 
to the lower deck). A(x ,  y) is the negative of the boundary-layer displacement 
thickness, and it is defined by asymptotic matching of all three decks. 

The main deck (or middle layer) is simply a streamwise continuation of the 
upstream boundary layer. To first order, viscous forces are insignificant, and the 
governing equations can be solved analytically. This solution can be expressed 
physically as a simple transverse shift of the undisturbed boundary-layer flow. From 
the steady-state solution in the main deck we have : 

u ( x m )  = uB(z,)+d(x,y)  U;,+0(e2), (2.30) 

(2.31) 
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where U,(z,) is the velocity profile of the incoming Blasius boundary layer and 
D(z,y) is given by 

Y) = - a,Pl(L Y) d5. (2.34) 

Equations (2.30)-(2.33) are coupled to the governing equations in the upper deck. 

1, 
The flow variables are appropriately scaled in the upper deck as 

It can be shown that the upper-deck problem reduces to a consideration of the 
Laplace equation for the steady pressure : 

v 2 e ( X ,  y, z,) = 0, (2.39) 

subject to the following boundary conditions : 

PI+o as X + - C Q ,  

P1+o as y + f a o ,  

P1+o as Z,+CQ, 

a,+o as X + C O .  

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Also, matching between the upper and main decks requires that 

e(c Y, z, + 0) = Pl@, y), (2.44) 

and a,"Pl(2, y, 2, + 0) = azz4z ,  34. (2.45) 

The above coupled equations with the given boundary and matching conditions 
present a well-posed problem. The nonlinear three-dimensional viscous-inviscid 
interaction problem given above can only be solved numerically for finite, order-one 
values of h. 

2.2. Receptivity problem 
The receptivity problem of the interaction between free-stream time-harmonic 
disturbances and a three-dimensional hump has the triple-deck structure as long as 
the hump height is of the order of the lower-deck thickness, O ( 8 ) .  Furthermore, we 
are only interested in relatively high-frequency free-stream disturbances, therefore, 
we choose S = O(s-'). This is of the same order as the Tollmien-Schlichting wave 
frequency at and upstream of the lower branch of the neutral stability curve. Thus 
we define a scaled Strouhal number So such that : 

so = E2S. (2.46) 

As noted above, we are looking for solutions that are harmonic in time, since the 
problem is linear and our forcing free-stream disturbances are given as such. 
Therefore, we may write for our perturbation properties : 

O(X, t )  = Re {edt v,,(x)}, 

p ( x ,  t )  = Re {e-itpp,(x)}. 

(2.47) 

(2.48) 
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For convenience, the subscript c is dropped and all the perturbation-flow 
properties are assumed to be complex. Like the steady-state flow, the fundamental 
problem reduces to a consideration of the lower- and upper-deck equations (see 
Tadjfar 1990 for the details). In the lower deck, where z cc e5, the expansions for flow 
properties may be written as 

u(x, y ,  21) = UO@, Y ,  21) +m, (2.49) 

(2.50) 

(2.51) 

(2.52) 

Similarly, in the upper deck, where z cc c3, the expansions for flow properties are 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

Putting the above expansions into (2.16) and (2.17), we obtain the governing 
equations pertinent to this problem. Here, we apply the Prandtl transposition 
theorem (see Rosenhead 1963, chap. 5, part 2, $8) to transform our computational 
domain in the lower deck into a cubical box, that is t o  turn the bottom wall with the 
roughness into a flat plate in the transformed coordinates. (Note that the upper-deck 
domain is already a cube.) Hence, we define the transformation : 

z+5: a,( 1 =a,( )-ha,Fa,c ), (2.57) 

Y + T :  a,( ) = a,( ) -ha,Fa,(  1 7  (2.58) 

z l - ~ ( ~ , Y ) + z ;  a,,( ) =a,( ). (2.59) 

We also define the new velocities, w and W ,  but keep u,, U,, v,, K, pa,  and PI 
unchanged : 

w wo-haSFuo-ha,Fvo, (2.00) 

W E  W,-ha,k’U,-ha,P~. (2.61) 

Next, we subtract out the upstream Stokes-flow solutions so that the upstream 
boundary conditions become homogeneous. Therefore, we define the additional 
transformation : 

u = u,-(l-exp(ihj,z)), (2.62) 

P = PO--~OE* (2.63) 

After substituting all the transformations, the governing equations in the lower 

a,u+a,v,+a,w = 0, (2.64) 
deck are 

(a, u, - is,) u+ a, u, vo +a, u, w+ u, a,u+ V, a, u+ wa, 

(a7 K-is,) v,+a, V, u+az V, w+ u, a,v,+ Kaa,vo+ wa,v, 

+a,p-a,, u = -a, U, + (a, U, +it& W )  exp (i:&z), (2.65) 

+a,p-a,,v, = -a,K(i-exp(ii&z)), (2.66) 

P = P(5 ,T) .  (2.67) 
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u = vo = w = 0 on z = 0, for all 5 and 7, (2.68) 

as '+-a, for all 7 and z 

as 171 + CQ, for all 5 and z .  
u, uo, w + 0 and/or (2.69) 

Also, as z+ CQ (for all 5 and v), the matching conditions to thc main deck require 

u+a(517), (2.70) 

(2.71) 

where u(',q) is defined by asymptotic matching of all thee decks (see (2.78) also). In 
the above equations, we have sealed out the value of the wall shear of the oncoming, 
undisturbed boundary layer, A, by a simple renormalization of variables. The effect 
of this renormalization is the same as setting h = 1 in all the governing equations (see 
Bodonyi & Duck 1988). 

In  the upper deck, for the sake of having a uniform notation, we rewrite 
(2, y, 2,) + ( E ,  7,  2,) and also define : 

Analogous to the 
conditions on the 

j3 = $l-i80c. (2.72) 

steady flow, the governing equation with appropriate boundary 
pressure in the upper deck are 

aMlj+a'17,F+azuzuP = 0, (2.73) 

+ - 00 for all 7 and z ,  
z ,  + co for all and 7,  $(', 7 , Z " )  + 0 as (2.74) 

i$$-iK&+O as '+co for all 7 and z,, (2.75) 
i3,,$-iK7j3+0 as q + f c o  for all 5 and z,. (2.76) 

A'> 7 > Z "  + O )  = P('> 7L (2.77) 

a,"$('> % Z U + O )  = a,,a('> 7) .  (2.78) 

The governing equation for the pressure in the upper deck is elliptic and in order 
to have a well-posed problem, we also need boundary conditions for the unsteady 
pressure for '+ 00 and 7 + f CQ. However, this is not a trivial task. Since the 
governing equations in the lower deck are parabolic, boundary conditions are not 
needed for them as '+ 00. Bodonyi et al. (1989) imposed a radiation condition on the 
outgoing pressure disturbances in the upper deck for their two-dimensional problem. 
Following their approach we have imposed similar conditions ((2.75) and (2.76)). The 
wavenumbers, K ,  and K,, are computed iteratively from the numerical computations. 
For example, K, is estimated from the relation (2.75) as 

at some location 
the numerical computations. The same method is used to evaluate K,. 

Also the matching of the solutions in between the decks requires 

(a, P) lip 
reasonably far downstream, and then it is fed back into 

3. Numerical method 
The method of Bodonyi & Duck (1988) with a slight modification (see Tadjfar 

1990) is used to solve the steady-state flow. Also, the method of Bodonyi et al. (1989) 
is generalized to solve the three-dimensional receptivity equations (2.64)-(2.78) 
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numerically. Following the approach of Smith (1983), to avoid exponential growth 
of 'departure eigensolutions ', we define the skewed shear parameters : 

E = a,u+a,v,, co = aCw, E =  [a,+a,,]pg,r). (3.1) 

Furthermore, define a new function, 

Using the above definitions and differcntiating the governing equations (2.64)-(2.66), 
it can be shown that 

ap+a,m = 0, (3.3) 

-iS,a+Ua,ti+ Wa,a+a,Um+e-a,,a= rh, (3.4) 

where, rh is given by 

rh = - ( 1  +u) (a,U+a,,,V) 

+ (a, u+ a,, V+ i:g a, W )  exp (iifi!) - w(a,, u+a,, V )  

- aC w a, u- 2 a, ua, u - 2 a, va, vo - 2 at va, u- 2 a, m , v ,  

-a,wa,v,-a,va,w-v(ar,u+a,, v)- v(avSU+a,,vO), (3.5) 

and the boundary conditions, (2.68) and (2.69), transform to 

f i = i i j = O  on z = O ,  (3.6) 

a,m,iz+O as 6 j - m .  (3.7) 

Also, as z + m ,  we can approximate the momentum equation (3.4) : 

Similarly for the upper-deck pressure, we define 

Therefore, the governing equation (2.73) in the upper deck becomes 

a,,e"+a,,e"+aZUzUe. = 0, (3.10) 

and the boundary conditions (2.74)-(2.76) become 

<(&7,z,)-+O as ~+-m,z,+co, 

i3,e"+iKte"(&r,z,) as ( - - zoo ,  

a,e"+iK,e"((,q,z,) as [+*a. 

(3.11) 

(3.12) 

(3.13) 

We also need the matching conditions, (2.77) and (2.78), to  close the problem: 

(3.14) 

(3.15) 

The receptivity problem is solved by the same technique as utilized for the steady 
problem. Following Bodonyi & Duck (1988) an iterative multi-sweep technique, 
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using forward marching in a quasi two-dimensional manner is used to solve the above 
equations. The 6, 7,  z and z ,  axes are discretized using the indices i = 0,1 ,2 ,  ..., 
n z - l l , n x , j = 0 : l , 2  ,..., n y - l , n y ,  k =  1 , 2 , 3  ,..., n - l , n , a n d q =  1 ,2 ,3  ,..., m - 1 , m  
respectively. The grid spacings are given by A t ,  AT, Az, and Ax,. The governing 
equations for the receptivity problem are differenced using a second-order-accurate 
scheme. The mesh is the same as the one used for the steady-state problem and the 
results of the steady-state solution, U ,  V ,  and W ,  are stored for all mesh points, since 
they are needed to evaluate the coefficients in the unsteady problem. Flow properties 
and their derivatives are centrally differenced about the node at  ( i - i , j  and k). This 
leads to  a system of equations along a line perpendicular to  the wall at any node 
( i , j ) .  The above sparse system is easily solved using standard Gaussian elimination 
to  obtain a, W ,  i ~ ,  b and 6 for all k and q along that line. 

This procedure is started a t  the node i = 1 a n d j  = 0, where i = 0 is the upstream 
boundary, 6 = .!&, a t  which point the solution to  the unsteady boundary layer is 
imposed. Also, j = 0 is the location of the line of symmetry, where the usual 
symmetry conditions are applied. The governing equations in both the lower and 
upper decks are solved simultaneously over the entire range of the normal directions, 
z and z,. After the solution is found along this line, normal to the wall, the procedure 
is marched forward in 6 until the entire ((,q)-plane is covered. The process is then 
repeated at  all the other 7-locations (i-fastest) to obtain this iteration of the solution 
over the entire domain. Once the new values of E ,  W ,  C, b and 6 are found over the 
entire domain, the definition of B is used to solve for the new values of unsteady 
pressure. The above Poisson equation, (3. l),  is solved using the successive-over- 
relaxation technique with uSOR = 1.6. Having found the pressure values a t  this 
global iterative step, we march the original 7-momentum equation (2.66) in 6 to 
calculate new values for vo. This results in a tri-diagonal system of equations which 
can easily be solved using the Thomas algorithm. Finally, the remaining velocity 
components are determined by integrating the skewed shears, (3.1), to get back the 
primitive variables. 

All the above steps constitute one global iteration. The solution (all the flow 
variables in their primitive form) obtained after one iteration is used as an initial 
guess for the next iterative step. This process is continued until global convergence 
is attained on the disturbance streamwise velocity u. That is, 

max [ulk -uj" 1 < E^ for all i,j, L, 
uinew ''old 

where E^ is a small number, usually in the order of It should also be noted that 
for regions of reversed flow the parabolic direction of the flow changes locally so that 
the forward-marching scheme used here becomes unstable. To overcome this 
difficulty the approximation suggested by Reyhner & Flugge-Lotz (1968) is 
implemented in the backflow regions. As shown by Williams (1974), this 
approximation is only valid and has little effect on the solution if the reversed flow 
velocities are small in magnitude. 

4. Numerical results 
Since we are interested in a general study of the problem, the choice of the hump 

shape is not crucial. To be consistent with prior work, Bodonyi & Duck (1988), 
Bodonyi et al. (1989), we use the same hump shape as givcn below (see figure 2):  

F ( x ,  y) = exp [ -2?-y2]. (4.1) 
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FIGURE 2. Computational domain and the hump shape as given by equation (4.1) 

- 4  -2 0 2 4 
X 

FIGURE 3. Flow streamlines at the plane of symmetry; Y = 0 at hump height k = 1 .O. 

In the steady-flow computations the following values were used for the parameters : 
in the streamwise direction AX = 0.10, -5.0 < X < 10.0; along the lateral direction 
we have AY = 0.10, 0 < Y < 5.0, and in the normal direction within the lower-deck 
region AZ = 0.10 and 0 < Z < 9.0. These values correspond to  using 151, 50, and 90 
points in the X - ,  Y - ,  and Z-directions, respectively. In the upper-deck region the 
same values were used for AX and A Y  while AZ, = 0.10 and 0 < Z, < 6.0, 
corresponding to the same number of grid points in the X- and Y-directions as in the 
lower-deck problem, with 60 points used in the Z-direction. 

For the height, h = 1.0, the boundary layer is displaced over the hump without 
separation. This is clearly evident in the flow streamlines a t  the plane of symmetry, 
Y = 0, presented in figure 3. Figure 4 presents the contour plot of the steady-pressure 
perturbations imposed across the boundary layer due to the hump’s presence. As can 
be seen, the flow is first slowed ahead of the hump, giving rise to the pressure peak 
there, and then the flow is accelerated over the hump to reach a minimum pressure 
point a t  the tip of the hump. Eventually these steady-pressure perturbations 
disappear downstream of the hump. The negative of the displacement thickness, 
A ( X ,  Y )  as defined by (2.28), is a measure of the slope of the flow over the hump and 
is presented in figure 5 .  A small wake region is evident in the above figure, which 
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FIGURE 4. Contour plot of steady pressure for the hump with h = 1.0. 

FIGURE 5. Contour plot of A ( X .  Y )  for the hump with h = 1.0. 

extends out of the computational domain. Further studies of the steady-state 
problem can be found in Tadjfar (1990). 

4.1 Receptivity of the laminur boundary layer 

The main goal of this study is to investigate the receptivity of a laminar boundary 
layer to the local interaction of free-stream disturbances with a small three- 
dimensional roughness element. Without the hump, the free-stream disturbances, to 
the first order, produce the classical Stokes flow near the wall in the lower deck. In 
(2.62) and (2.63), we subtracted this uniform Stokes flow out of our solution. Hence, 
in the hump’s absence the disturbance flow is zero everywhere. 

In our disturbance-flow computer program, all the flow variables are complex 
valued and all the steady-flow variables are also needed to evaluate the coefficients. 
Therefore, owing to computer-storage limitations, a coarser mesh than the one used 
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FIGURE 6. Surface plots of T-S wave pressure for ( a )  So = 1.0, ( b )  2.0, and (c) 3.0 at time t = 0. 

to evaluate the steady-state flow field is necessary. However, this restriction is not 
crucial. For convenience, we have replaced 6, 7, and z, by X, Y ,  and Z ,  respectively. 
Furthermore, the following values were used for the parameters : in the streamwise 
direction AX = 0.30, -3.6 < X < 11.4; along the lateral direction we have 
AY = 0.20, 0 < Y < 6.0; and in the normal direction within the lower-deck region 
AZ = 0.30 and 0 < Z < 6.3. These values correspond to using 50, 30, and 21 points 
in the X-, Y- ,  and 2-directions, respectively. In the upper-deck region the same 
values were used for AX and AY while AZ, = 0.20 and 0 < 2, < 3.2, corresponding 
to the same number of grid points in the X- and Y-directions as in the lower-deck 
problem with 16 points used in the Z, direction. 

The effect of using this mesh on these computations is examined by computing the 
results for So = 1.0 with different mesh sizes. In  separate numerical calculations the 
number of points in one direction is doubled, with all the other parameters 
unchanged. This is repeated for all three directions in the lower deck and the normal 
direction in the upper deck. The range of the mesh is also extended in all the 
directions in separate computations. No noticeable changes (less then one percent) in 
the results are observed. Hence, it is concluded that the above mesh is sufficient for 
studying the disturbance-flow field over the given hump. For all these computations 
the steady flow field is calculated on the finer mesh given previously. For the steady- 
flow computations, the upstream influence of the hump’s presence required that the 
upstream boundary conditions be applied a t  X = 5.0. However, in the disturbance- 
flow computations, the upstream propagation of the disturbance decays more 
rapidly, therefore, making i t  possible to apply the upstream boundary conditions at 
X = -3.6 (thereby lowering the computational costs). 
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FIQURE 7. Time evolution of the pressure surface for a growing T-S wave, So = 3.0, 
at times (a) t = 0, ( b )  rr/2 and (c) 3 ~ / 2 .  

Guided by the two-dimensional studies of Bodonyi et al. (1989), we expect the 
crucial parameter to  be the scaled Strouhal number, So. Therefore, we study the 
effect of varying the Strouhal number on the disturbance flow as it is convected 
downstream. For all order-one scaled Strouhal numbers, the interaction of the hump 
and the free-stream disturbances introduces a spectrum of all spatial disturbances in 
the boundary layer around the hump. For So = 1.0, this initial kink decays rapidly 
as it moves downstream. As the Strouhal number is increased, the rate of attenuation 
decreases. About So = 2.0 the total energy introduced by the interaction stays 
constant and is only spread spanwise. As the Strouhal number is further increased, 
the initial kink is amplified as it moves downstream. This can be seen in figure 6, 
which shows the disturbance-pressure surfaces for So = 1.0, 2.0, and 3.0 at time 
t = 0. Pressure is a good variable to follow the disturbance motion downstream, since 
i t  is uniform across the boundary layer to this order in the asymptotic expansions. 
For So = 3.0 the disturbance is growing in a wedge shape extending downstream of 
the hump. The wave motion is periodic, equations (2.47) and (2.48), and is repeated 
every At = 27t. This time evolution is shown in figure 7 .  The spatial and temporal 
evolutions are related; the second and third crests seen a t  time t = 0 are simply the 
first crest having been amplified as it moves downstream a t  times t = 2n: and 4n: 
respectively. 

Similar structures are also evident in all other flow quantities. However, 
disturbance velocities are a function of the normal direction and exhibit variations 
along the Z-axis. This can be seen by comparing the u-velocity contours near the 
outer edge of the lower deck to the values near the wall (see figures 8 and 9). a(X, Y )  
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Y 

X 
FIGVRE 8. Contour plot of u(x. y. t )  representing u-velocity near the outer edge of the lower 

deck for A’,, = 3.0 at time t = 0. 

Y 

X 
FIGIJRE 9. Contour plot of du/dz at the wall for So = 3.0 at time t = 0. 

can be interpreted as the limiting value of the streamwise disturbance velocity u, 
a t  the outer edge of the lower deck, by equation (2.70). Streamwise wall-shear, 
du/dz (x, y, t ; z  = 0 ) ,  represents the u-velocity field near the wall. Contours of a(X, Y )  
are similar to the pressure contours shown in figures 6 and 7 with a phase shift. The 
time-averaged amplitude of u-velocity, urmS, a t  the outer edge of the lower deck is 
given by the modulus la,(x,y)l. A contour map of u,,, amplitude is presented in 
figure 10. 

To study the growth or decay of the disturbance motion as it is convected 
downstream, we nced to define a measure of the disturbance energy. We use the 
disturbance pressure owing to its lack of dependency on the normal direction, 2, 
which makes it valid across the boundary layer and not just the lower deck. BJ- 
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Y 

X 
FIGURE 10. Contour map of la,&, y)I representing u,,, near the outer edge 

of the lower deck tor S o  = 3.0. 

X 
FIGURE 11.  Energy function, E ( x ) .  for S o  = 1.0 ( - - - - ) ,  2.0, (---), 2.5. (-.-), 

and 3.0 (-) at time 1 = 0. 

integrating some representation of disturbance cnergy, which we define as the square 
of the time-averaged amplitude of pressure, across the spanwise direction, we define 
an energy function : 

E(4 = s_: IP,(Z> Y)I2 dy. (4.2) 

Energy functions for different Strouhal numbers are presented in figure 11. The effect 
of Strouhal number on growth or decay of the internalized wave motion is evident 
in the energy function plots. The value of the energy function at the roughness 
location, E,  = E ( x  = 0 ) ,  can be seen as a measure of receptivity. This is the initial 
amount of energy internalized by the receptivity mechanism at the roughness 
location. E,  is related to  the square of 8, the ratio of the free-stream disturbance 
strength to free-stream velocity, by (2.7).  

Amplification curves for ln(E/E,) versus X for various Strouhal numbers are 
plotted in figure 12. Thc energy function amplitudes are normalized by E,  so the 
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FIGURE 12. Normalized amplification curves of the energy function for 8, = 1.0 ( - - - - ) ,  
2.0, (---), 2.5, (-.--), and 3.0 (-) at time t = 0. 

amplification curves have a zero value a t  the input location. Prom the amplification 
curves we can determine the growth rate of the T S  waves generated using the 
formula : 

(4.3) 

The factor -a is used to be able to compare the computed growth rates to  that of a 
two-dimensional T-S wave, Ki, as found in the linearized analysis of Duck (1985). 
The calculated growth rates and their two-dimensional counterparts are plotted in 
figure 13. The computed values approach a value slightly higher than the ones 
calculated by the linearized analysis. This is also evident in that the computed 
neutral Strouhal number, So = 2.0, is lower than that calculated by the linearized 
analysis €or two-dimensional T-S waves, So = 2.29 . . . . 

4.2. Concluding remarks 

I n  the absence of any roughness element, the free-stream disturbances, to the first 
order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the 
order of our lower deck). However, with the introduction of a small three- 
dimensional roughness element, the interaction between the hump and the Stokes 
flow introduces a spectrum of all spatial disturbances inside the boundary layer. For 
values of So < 2.0, this initial kink decays rapidly. As So = 2.0 is approached the rate 
of this attenuation decreases. At So = 2.0 the total wave energy stays constant and 
is only spread spanwise as it moves downstream (see figures 6,11 ,  and 12). For higher 
values of So > 2.0, T-S wave energy is amplified in a wedge-shaped region, 15'-18' 
to the basic-flow direction, extending downstream of the hump. However, the 
maximum amplification occurs along a ray of 7.5'-9', a t  the wedge half angle, from 
the basic-flow direction (see figures 8,9 ,  and 10). The existence of this wedge-shaped 
amplification domain or the oblique maximum amplification direction cannot be 
explained by relating them to the steady-flow perturbations in the wake region 
downstream of the hump (see figure 5). At the exit boundary, X = 11.0, the steady- 
flow wake region extends to Y = * 0.5. However, the T-S wave peak amplitudes are 
a t  Y = f 1.5 to  f2 .0  depending on the Z-location. 

The near-field region downstream of the hump is influenced by the wake of the 
hump. Therefore, the instability waves generated by the hump are not truly the 



718 M .  Tadjfar and R. J .  Bodonyi 

- 1.0 

- 1.5 1-1 
- 3 0  3 6 9 

1 .o 
0.5 

- 0.5 

- 1.0 -1.0 

- 1.5 - 1.5 
- 3 0  3 6 9 - 3 0  3 6 9 

X X 
FIGURE 13. Computed growth rates, a@), us. the values from linearized analysis of Duck (1985), 
Ki, for the two-dimensional T-S wave where: (a) K,(S, = 1.0) = 0.12067; ( b )  K,(S, = 2.0) = 
0.03227; (c) Ki(S, = 2.5) = -0.02194; ( d )  K,(S, = 3.0) = -0.07472. 

classical T-S waves. However, these instability waves approach the classical T-S 
waves asymptotically further downstream. The critical Strouhal number in our 
study is near S, = 2.0, which is just below the value S, = 2.29 ..., describing the 
lower branch of the neutral-stability curve for the Blasius profile. Also, the computed 
growth rates approach a value slightly higher than the ones calculated by the 
linearized analysis for two-dimensional T-S waves (see figure 13). 

In this analysis, we have considered the infinite-wavelength uniform pulsation of 
the free stream corresponding to a plane acoustic field in an incompressible flow. 
Goldstein & Hultgren (1989) point out that  in physical flows the inviscid free-stream 
disturbances have the convective wavelength U z /  f, which in the high-Reynolds- 
number limit is of 2z0(s2) (very long compared with the T-S wavelength). Hence, the 
interaction of much longer oscillations, of 2nO(s2) or larger, in the free stream with 
a small three-dimensional roughness element have generated much shorter T-S 
waves, of O(s3) ,  inside the laminar boundary layer. Accumulation of these three- 
dimensional patches of T-S waves generated by the local receptivity mechanism at  
every small surface-roughness location may explain one source of natural transition. 

Gilev & Kozlov (1984) used a thin rectangular vibrating film (188 x 28 mm) 
mounted on the surface to introduce harmonic disturbances into the flow. In  their 
experiment the disturbances are directly inputted into the boundary layer a t  the 
wall. In  our analysis, instability waves are generated due to the acoustic-roughness 
interaction. However, there are enough similarities in the results that may be 
compared qualitatively. They observed a local maximum of the disturbance 
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amplitude above the vibrating film. The magnitude of this initial amplitude was 
practically independent of the frequency of the oscillation and only its evolution 
further downstream was influenced by the input frequency. This same phenomenon 
can be observed in our results in the value of the energy function above the roughness 
element a t  X = 0 (see figure 11). A rapid attenuation of disturbance energy was seen 
upstream of the vibrator irrespective of the oscillation frequency. I n  addition, they 
reported the existence of a local minimum in the disturbance amplitude just 
downstream of the vibrator. The introduced instability wave evolved into a T-S 
wave further downstream. (This was evident in the reported profiles of ugms and the 
phase of the disturbance across the boundary layer.) All the above-mentioned effects 
can be seen in the energy function plot of the instability wave, induced by the 
roughness-acoustic interaction, in our analysis. In  fact, our figure 11 is very similar 
to the figure 6 of Gilev & Kozlov (1984). 

The authors are grateful to  Ohio Supercomputer Center for providing computer 
time on the Cray Y-MP supercomputer. 
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